ESTUDIO DE FALLAS EN REVESTIMIENTOS DE CHANCADORES FABRICADOS EN ACEROS ALTOS EN MANGANESO

Alfredo Artigas A., Cesar Segovia C.
1Profesor Departamento de Ingeniería Metalúrgica, Universidad de Santiago de Chile, aartigas@usach.cl
2Laboratorios SIMET-USACH, Departamento de Ingeniería Metalúrgica, Universidad de Santiago de Chile, simet@usach.cl

Introducción

Los aceros austeníticos al manganeso (Mn) resistentes al desgaste, también referidos como Aceros Hadfield, han existido por más de 100 años. Por tanto, más de 10 grados de aceros austeníticos están identificados en la norma ASTM A128 y listados en la tabla 1 siguiente. Un gran porcentaje del tonelaje mundial actualmente producido de estos aceros, se acerca a la composición inicial del acero Hadfield convencional.

Los aceros al manganeso son materiales de baja resistencia y alta ductilidad, como se puede determinar por medio de un ensayo de tracción antes de su puesta en servicio. Su microestructura es principalmente una fase austenita metasta ble, posterior a su tratamiento térmico.

Sus principales propiedades mecánicas obtenidas son: su esfuerzo de fluencia está entre de 280 y 470 MPa. Dureza Brinell del orden de 170 a 220. La elongación a rotura típica varía entre 20 y 40% para secciones transversales de piezas originales. Esta alta ductilidad permite lograr las más altas tenacidad al impacto por sobre 136) a temperatura ambiente, y tenacidad a la fractura del orden de 120MPa \sqrt{m}.

Otra característica importante de estos aceros es su capacidad para endurecerse por trabajo desde una dureza inicial de 180 BHN hasta sobre los 500 BHN (51 HRC). Las figuras 1 muestran los resultados comparativos entre distintas aleaciones ferrosas resistentes al desgaste en: tracción (fig.1(a)) e impacto repetitivo (fig. 1(b)), en las que se observa principalmente la gran capacidad de deformación de los aceros al Mn, su tenacidad y su endurecimiento por deformación. Evidentemente superior a las otras aleaciones ferrosas comparadas.

<table>
<thead>
<tr>
<th>Identificación</th>
<th>Composición química</th>
<th>Propiedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.05</td>
<td>Mn 0.90</td>
</tr>
<tr>
<td></td>
<td>1.35</td>
<td>Si 0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ni 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cr 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mo 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHN 180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVN 30</td>
</tr>
</tbody>
</table>

Por otro lado, la austenita con altos %Mn, es muy susceptible al fenómeno de fragilidad intergranular,
la cual es la principal causa de los rechazos en producción y fallas en servicio. El efecto de la masa juega un papel extremadamente importante en la segregación dendrítica. La concentración de elementos de aleación en los espacios interdendríticos, actúa directamente en desmedro de la tenacidad e indirectamente modifica la cinética de transformación de la austenita.

Uso en la Molienda de Minerales

Por las razones antes expuestas este tipo de material es ideal para componentes de alto desgaste y con impactos repetitivos. La principal cualidad que posee es presentar un gran endurecimiento superficial debido a golpes reiterados, lo que confiere al acero una alta resistencia al desgaste lo que se suma a la gran tenacidad que presenta, necesaria para soportar grandes esfuerzos sin fracturarse.

Por sus propiedades estas aleaciones son ampliamente utilizadas en revestimientos resistentes a golpes y desgaste, en particular, se tienen las siguientes aplicaciones:

- Chancadores de mandíbula.
- Chancadores de cono.
- Chancadores giratorios.
- Molinos de bolas.
- Molinos de barra.

Casos típicos de fallas.

Entre las fallas típicas de estos revestimientos se tienen las fracturas prematuras antes del desgaste admisible de los mismos. Este hecho es perjudicial en la operación de una planta de conminución de minerales, pues trae por consecuencia la detención de la planta, con lo cual se suma no solamente el costo del cambio de revestimiento sino también, la perdida de productividad de la planta. Además la fractura repentina de un revestimiento puede generar daños en otras piezas importantes de los equipos.
Figura 2.- Esquema de un chancador giratorio donde se aprecian los revestimientos de aceros al manganeso (color café claro).

En las figuras 3 y 4, se muestran fallas típicas producidas en chancadores de cono y giratorios.

Figura 3.- Fractura y grieta de un revestimiento de chancador.

Figura 4.- Superficies típicas de fractura de revestimientos de chancador.

Las causas de las fracturas se determinan básicamente por medio del control de la composición química y análisis microestrutural del acero. En todos los casos presentados no existen problemas con la composición química, es decir cumplen con la normas establecidas por la empresa, o en su defecto por la normas ASTM.

Por tanto, los casos ha analizar sólo serán vistos del punto de vista microestructural. Para aquello se proceden a cortar con disco refrigerados muestras del acero, las cuales son pulidas y atacadas para observación microscópica.

Causas de las fracturas:
Las causas de la fractura corresponden a una pérdida en la tenacidad del material, que pueden tener su origen por sí sola o en conjunto en las siguientes 5 situaciones:

1. Alto nivel de inclusiones y/o atrapamientos de escorias, si estas anomalías se encuentran en zonas de altos esfuerzos, pueden ocasionar repentinamente fracturas. Estas fallas son atribuidas a problemas de colada. En la figura 5 y 6, se muestran algunas de estas imperfecciones.
Figura 5.- Imagen a 100 aumentos sin ataque de un atrapamiento de escoria.

Figura 6.- Imagen a 100 aumentos sin ataque de inclusiones no metálicas.

Figura 8.- Imagen a 500 aumentos con ataque de microrechupes en los bordes de grano austeníticos.

2. **Rechupes, poros y microrechupes;** provenientes también de problemas de colada. En las figuras 7 y 8 se muestran imágenes de este tipo de problemas.

Figura 7.- Imagen a 100 aumentos sin ataque rechupes.

3. **Presencia de nitruros en los bordes de grano austeníticos,** debido a que el acero puede disolver grandes cantidades de nitrógeno, estos pueden formar nitruros en los bordes de grano fragilizando la estructura. Para evitar este tipo de inclusión es necesario tener buenas prácticas de fundición y un buen manejo del nitrógeno. Este tipo de inclusiones pueden provocar fácilmente la iniciación de una grieta, producto de su dureza y su geometría (con esquinas). En la figura 9 se observan una aglomeración de estos nitruros.

Figura 9.- Imagen a 500 aumentos sin ataque de una aglomeración de nitruros.

4. **Tamaño de grano austenítico,** aunque no es un factor tan preponderante existen límites en el tamaño de grano para los distintos usos del acero. Generalmente un crecimiento excesivo del grano se produce durante el tratamiento térmico de disolución de
carburos, por otro lado, al tener un gran tamaño de grano la pieza pierde tenacidad y además se fragiliza producto de la presencia de carburos en los bordes de estos granos. En la figura 10, se muestra un ejemplo donde el tamaño de grano austenítico es mayor que ASTM 0.

Figura 10.- Imagen a 500 aumentos con ataque de una grano austenítico de tamaño mayor a ASTM 0.

5. **Distribución y tamaño de carburos** los que se encuentran tanto en el interior como en bordes de grano. Esto se acentúa con las aleaciones que contienen cromo. La presencia de estos carburos en los bordes de grano fragilizan la pieza y son producidos por una deficiente temperatura o tiempo de residencia de la pieza en el horno que no es suficiente para disolver los carburos. También pueden ser producidos por un temple inadecuado, generando el crecimiento de los carburos durante el enfriamiento. Se debe tener en cuenta que el tratamiento térmico puede ocasionar un crecimiento excesivo del tamaño de grano, perjudicando también la tenacidad de la pieza. En la figura 11 y 12 se muestran concentraciones de estos carburos y el camino por donde viaja la grieta.

Figura 11.- Imagen a 500 aumentos con ataque de una grieta que avanza por el borde de grano producto de la presencia de carburos

Figura 12.- Imagen a 500 aumentos con ataque de una grieta que avanza por el borde de grano producto de la presencia de carburos

Por lo general, las piezas fallan producto de una suma de las anomalías antes descritas. Por ejemplo en la figura 13, la falla es atribuida a un conjunto de defectos, como son la presencia de nitruros, escorias y poros. En

Figura 13.- Imagen a 500 aumentos con ataque con presencia de poros, escoria y nitruros.
la figura 14 se observa la presencia de nitruros y carburos en los bordes de grano y un tamaño de grano austenítico más grande de lo recomendado.

![Imagen de muestra](image.png)

Figura 14.- Imagen a 500 aumentos con ataque con presencia nitruros y carburos.

Comentarios finales:

En general las fallas son atribuidas a una o más de las anomalías antes presentadas. No existen normas que especifiquen los límites de cada una, entonces cada empresa que fabrique estas piezas tendrá su norma interna que establezca sus límites en función de los requerimientos mecánicos de la pieza y la retroalimentación de su comportamiento en faena por parte del cliente.

Si se está actuando de manera preventiva, es decir con un estricto control de la calidad de la pieza antes de ser utilizada, se debe considerar para el análisis metalográfico un trozo representativo de la pieza.

Referencias

1. ASM Metals Handbook, Vol. 1, 8va Edición
2. ASM Steel Casting Handbook
3. Norma ASTM A128
4. REVISTA REMETALLICA Nº 24, Junio del 2004
5. Informes Internos del Laboratorio SIMET-USACH, www.simet.cl