EBSD Y SUS APLICACIONES EN EL ESTUDIO DE MATERIALES

Gladys C. Olivares
Laboratorio de Microscopía Electrónica, Departamento de Ingeniería Metalúrgica, Universidad de Santiago de Chile. gladys.olivares@usach.cl

En el contexto de una modernización para contar con equipos inexistentes en Chile y con el apoyo económico de la Compañía Siderúrgica Huachipato S.A. y de la Universidad de Santiago de Chile, el Dpto. de Ing. Metalúrgica cuenta desde hace un año con un equipo EBSD (Electron Backscattering Diffraction) de marca EDAX. Este equipo incorporado al Microscopio Electrónico de Barrido, marca JEOL 5410, es capaz de caracterizar la estructura cristalina de un material, sus aplicaciones pueden describirse en base a dos aspectos; la Identificación de Fases y el Análisis de Textura.

Con respecto a la identificación de Fases; si quisiéramos estudiar un material que posee diferentes fases, el microscopio electrónico de barrido cuenta con un sensor de backscattering, el cual es capaz de generar una imagen con contraste de peso atómico en diferentes tonos de grises, la cual mostraría las diferentes fases si estas presentaran una composición diferente; pero cuando las fases en un material no presentan una diferencia notable de sus pesos atómicos asociados a cada una, entonces la imagen no revelaría las fases existentes, ya que no es capaz de distinguirlas. Por lo tanto necesitamos de otra herramienta para hacerlo, la cual es el EBSD, que genera una imagen, ahora basada en la estructura cristalina existente, lo que diferenciaría dos fases aún cuando sus pesos atómicos fueran similares. Un simple ejemplo sería si quisiéramos estudiar grafito y diamante, al realizar un análisis de EDS (energy dispersive spectroscopy), en ambos, sólo se obtendría un espectro con la clara presencia de carbono, sin discriminar una diferencia entre ambos. Ahora si analizáramos con el EBSD podemos diferenciar claramente la estructura hexagonal del cristal de grafito de la estructura cúbica de un diamante [1].

Figura 1: Identificación de la estructura del grafito y del diamante por medio de EBSD

Ahora con respecto al Análisis de Textura; esta podríamos definirla como el estudio de la anisotropía presente en los materiales, debido a que las propiedades de un material varían dependiendo de la dirección en que esta se mida, lo cual significa que si se ejerce una fuerza puntual en un material la respuesta de este será diferente dependiendo de la dirección en que se encuentra la textura del material.
como es la fig. izquierda, la pieza no será anisotrópica pero sus propiedades podrían ser las mismas en todas direcciones, lo cual se llama isotrópico. Esta disposición de la orientación cristalina es la que se denomina textura del material.

Una amplia variedad de propiedades se han estudiado a través de la textura, como la elasticidad, la plasticidad, superconductividad, corrosión bajo tensión y otros. Por lo tanto, el EBSD es una importante herramienta para caracterizar la textura de los materiales policristalinos, así como los bordes y tamaños de grano.

Los materiales más estudiados en EBSD en los últimos cinco años son aleaciones de una fase con estructuras fcc, bcc, hexagonal, superconductores, material electrónico, geológico y otros materiales intermetálicos [2].

A continuación podemos ver gráficamente el interés demostrado en publicaciones de diferentes materiales en el año 2008 [2].
Su mayor aplicación es en metales y aleaciones de una fase, de los cuales se obtiene su microestructura y microtextura; relacionándose este estudio con el proceso de los metales. Después de los metales, los materiales geológicos se han incrementado en el número de estudios, debido al notable avance en resolución, identificación de fases y mapeo de multifases, ya que con frecuencia son materiales muy complejos por la cantidad de fases y morfología, y gracias a la rapidez en la realización de estos estudios; determinación de orientación y distribución de orientación en las diferentes fases; ahora es posible obtener esta información hasta en 3D, lo cual es muy útil sobre todo en este tipo de materiales. En la categoría de los materiales electrónicos, los estudios incluyen al Si (incluidos en celdas solares); arseniuro de galio; nitruro de galio; germanio, diamante y cobre.

Al investigar propiedades relacionadas con la textura y su relación con la microestructura, también se ha observado un aumento en el estudio de materiales cerámicos como aleaciones de WC-Co y Al₂O₃. Otros materiales estudiados son los intermetálicos, materiales magnéticos, materiales multifases y no muy usualmente materiales con uranio [2].

En el siguiente gráfico podemos ver como se utiliza el EBSD para diferentes tipos de estudio de los materiales.

Figura 5: Aplicaciones del EBSD en artículos del año 2008 [2]

Podemos concluir que esta nueva herramienta es fundamental en el estudio de textura de diferentes materiales y que además nos permite correlacionar diferentes propiedades con el cambio de estructura cristalina del mismo.

Agradecimientos: El Dpto. de Ing. Metalúrgica agradece el apoyo económico de la Compañía Siderúrgica de Huachipato S.A. para adquirir el primer equipo en Chile de EBDS, que será de gran utilidad para investigación y sector productivo.

Referencias:

1. Why EBSD, características de OIM EDAX.